已知圆C方程:(x-1)2 + y 2=9,垂直于x轴的直线L与圆C相切于N点(N在圆心C的右侧),平面上有一动点P,若PQ⊥L,垂足为Q,且;
(1)求点P的轨迹方程;
(2)已知D为点P的轨迹曲线上第一象限弧上一点,O为原点,A、B分别为点P的轨迹曲线与轴的正半轴的交点,求四边形OADB的最大面积及D点坐标.
已知函数.
(1)若曲线经过点,曲线在点处的切线与直线平行,求的值;
(2)在(1)的条件下,试求函数(为实常数,)的极大值与极小值之差;
在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.
(1)判别MN与平面AEF的位置关系,并给出证明;
(2)证明AB⊥平面BEF;
(3)求多面体E-AFNM的体积.
已知中,,点为边所在直线上的一个动点,则满足
A.最大值为16 B.最小值为4
C.为定值8 D.与的位置有关
过点P(2,1)的双曲线与椭圆共焦点,则其渐近线方程是 ( )
A. B.
C. D.
已知函数,则是( )
A、最小正周期为的奇函数 B、最小正周期为的奇函数
C、最小正周期为的偶函数 D、最小正周期为的偶函数