已知所在的平面互相垂直,且AB=BC=BD,,求:
⑴.直线AD与平面BCD所成角的大小;
⑵.直线AD与直线BC所成角的大小;
⑶.二面角A-BD-C的余弦值.
如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:
时间/分钟 |
10~20 |
20~30 |
30~40 |
40~50 |
50~60 |
L1的频率 |
0.1 |
0.2 |
0.3 |
0.2 |
0.2 |
L2的频率 |
0 |
0.1 |
0.4 |
0.4 |
0.1 |
现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.
(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?
(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望.
已知的周期为2
(1)求的最大值以及取最大值时x的集合
(2)已知,且,求
如图,点是圆上的点,
且,则对应的劣弧长为 .
.记函数的图象与轴围成的区域为M,满足的区域为N,若向区域M上随机投一点P,则点P落入区域N的概率为 .
.如果执行上面的框图,输入,则输出的数S= .