(本题满分14分)
已知函数
(I)若函数在上是减函数,求实数的取值范围;
(II)令,是否存在实数,当(是自然常数)时,函数的最小值
是3,若存在,求出的值;若不存在,说明理由;
(Ⅲ)当时,证明:.
(本小题满分14分)
设椭圆的离心率为=,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.
(1)求椭圆的方程;
(2)椭圆上一动点关于直线的对称点为,求的取值范围.
(本题满分12分)
如图1,在直角梯形中,,,, 为线段的中点.将沿折起,使平面平面,得到几何体,如图2所示.
(Ⅰ) 求证:平面;
(Ⅱ) 求二面角的余弦值.
(本题满分14分)
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别
进行抽样检查,测得身高频数分布表如下表1、表2.
表1:男生身高频数分布表
表2:女生身高频数分布表
(1) 求该校男生的人数并完成下面频率分布直方图;
(2)估计该校学生身高(单位:cm)在的概率;
(3)在男生样本中,从身高(单位:cm)在的男生中任选3人,设表示所选3人中身高(单位:cm)在的人数,求的分布列和数学期望.
(本小题满分12分)
已知向量,,设函数.
(1)求函数的值域;
(2) 已知锐角的三个内角分别为,,,若,,求 的值.
(几何证明选讲选做题)已知是圆的切线,切点为,直线交圆于两点,
,,则圆的面积为 .