已知函数f(x)=(x2+bx+c)ex,其中b,cR为常数.
(Ⅰ)若b2>4(c-1),讨论函数f(x)的单调性;
(Ⅱ)若b2≤4(c-1),且=4,试证:-6≤b≤2.
设函数
(Ⅰ)求函数的极值点;(Ⅱ)当p>0时,若对任意的x>0,恒有,求p的取值范围;
(Ⅲ)证明:
已知二次函数满足,且关于的方程的两实数根分别在区间(-3,-2),(0,1)内。
(1)求实数的取值范围;
(2)若函数在区间(-1-,1-)上具有单调性,求实数C的取值范围
已知是函数图象上一点,过点的切线与轴交于,过点作轴的垂线,垂足为 .
(1)求点坐标;
(2)若,求的面积的最大值,并求此时的值.
已知函数.(Ⅰ)求的定义域;Ⅱ)证明:函数在定义域内单调递增.
对于函数f(x)定义域中任意x1,x2(x1≠x2)有如下结论:
①f(x1+x2)=f(x1)+f(x2); ②f(x1·x2)=f(x1)+f(x2);
③; ④f()<.
当f(x)=lgx时,上述结论中正确结论的序号是 .