若集合M={y︱x=y,x,集合N={y︱x+y=0,x},则MN等于
A.{y︱y} B.{(-1,1),(0,0)}
C.{(0,0)} D.{x︱x0}
已知数列{an}满足:a1=,且an=
(1) 求数列{an}的通项公式;
(2) 证明:对于一切正整数n,不等式a1·a2·……an<2·n!
已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。
(Ⅰ)、求数列的通项公式;
(Ⅱ)、设,是数列的前n项和,求使得对所有都成立的最小正整数m;
设数列的首项为,前n项和满足关系式:
1)求证: 数列是等比数列;
2)设数列的公比为f(t),作数列,使得,求:b及;
3)求和。
已知是定义在上的不恒为零的函数,且对定义域内的任意x, y, f (x)都满足.
(1)求f (1)、f (-1)的值;
(2)判断f (x)的奇偶性,并说明理由;
(3)证明:(为不为零的常数)
数列的前项和为,已知
(Ⅰ)写出与的递推关系式,并求关于的表达式;
(Ⅱ)设,求数列的前项和。