在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)是否存在点,使得直线与抛物线相切于点若存在,求出点的坐标;若不存在,说明理由.
已知数列﹛﹜满足:.(Ⅰ)求数列﹛﹜的通项公式;(II)设,求
如图,在四棱锥中,底面是矩形,底面,是的中点,已知,,,求:(Ⅰ)三角形的面积;(II)三棱锥的体积
为加强中学生实践、创新能力和团队精神的培养,促进教育教学改革,教育部门主办了全国中学生航模竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙、丙和丁四支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
⑾求决赛中甲、乙两支队伍出场顺序相邻的概率.
在△中,角的对边分别为,已知,且,,求: (Ⅰ).⑾△的面积.
设函数的定义域为,若存在非零实数使得对于任意,有,且,则称为上的“高调函数”.现给出下列命题:
①函数为上的“1高调函数”;
②函数为上的“高调函数”;
③如果定义域为的函数为上“高调函数”,那么实数的取值范围是;
其中正确的命题是 .(写出所有正确命题的序号)