C. [选修4-4:坐标系与参数方程](本小题满分10分)
已知直线的参数方程:(为参数)和圆C的极坐标方程:,判断直线和⊙C的位置关系.
B. [选修4-2:矩阵与变换](本小题满分10分)
已知二阶矩阵A的属于特征值-1的一个特征向量为,属于特征值3的一个特征向量为,求矩阵A.
A. [选修4-1:几何证明选讲](本小题满分10分)
如图,AB是⊙O的直径,C是⊙O外一点,且AC=AB,BC交⊙O于点D.
已知BC=4,AD=6,AC交⊙O于点E,求四边形ABDE的周长.
(本小题满分16分)
已知等差数列中,,令,数列的前项和为.
(1)求数列的通项公式;
(2)求证:;
(3)是否存在正整数,且,使得,,成等比数列?若存在,求出的值,若不存在,请说明理由.
(本小题满分16分)
已知椭圆的左、右顶点分别A、B,椭圆过点(0,1)且离心率.
(1)求椭圆的标准方程;
(2)过椭圆上异于A,B两点的任意一点P作PH⊥轴,H为垂足,延长HP到点Q,且PQ=HP,过点B作直线轴,连结AQ并延长交直线于点M,N为MB的中点,试判断直线QN与以AB为直径的圆O的位置关系.
(本小题满分16分)
已知函数的定义域为(0,),且,设点P是函数图象上的任意一点,过点P分别作直线和轴的垂线,垂足分别为M、N.
(1)求的值;
(2)问:是否为定值?若是,则求出该定值,若不是,请说明理由;
(3)设O为坐标原点,求四边形OMPN面积的最小值.