已知全集,集合,,则为( )
A. {1,2,4} B. {2,3,4} C. {0,2,4} D. {0,2,3,4}
定义,
(Ⅰ)令函数,过坐标原点O作曲线C:的切线,切点为P(n>0),设曲线C与及y轴围成图形的面积为S,求S的值。
(Ⅱ)令函数,讨论函数是否有极值,如果有,说明是极大值还是极小值。
(Ⅲ)证明:当
如图,在三棱锥S—ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设
PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.
(I)求证:;(Ⅱ)求证:平面MAP⊥平面SAC;
( Ⅲ)求锐二面角M—AB—C的大小的余弦值;
3个同学分别从a,b,c,d四门校本课程中任选其中一门,每个同学选哪一门互不影响;(I)求3个同学选择3门不同课程的概率;(II)求恰有2门课程没有被选择的概率;(Ⅲ)求选择课程a的同学个数的分布列及数学期望.
从甲地到乙地一天共有A、B 两班车,由于雨雪天气的影响,一段时间内A 班车正点到达乙地的概率为0.7,B 班车正点到达乙地的概率为0.75。
(1)有三位游客分别乘坐三天的A 班车,从甲地到乙地,求其中恰有两名游客正点到达的概率(答案用小数表示)。
(2)有两位游客分别乘坐A、B 班车,从甲地到乙地,求其中至少有1 人正点到达的概率(答案用小数表示)。
已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合.直线的参数方程为 (为参数),圆的极坐标方程为.若直线与圆相交于、且
,求实数的值.