(12分)如图,四棱锥中,底面为平行四边形,,,⊥底面.
(1)证明:平面平面;
(2)若,求与平面所成角的正弦值.
(12分)已知是二次函数,方程有两相等实根,且
(1)求的解析式.
(2)求函数与函数所围成的图形的面积.
.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图4中的实心点个数1,5,12,22,…, 被称为五角形数,其中第1个五角形数记作,第2个五角形数记作,第3个五角形数记作,第4个五角形数记作,……,若按此规律继续下去,若,则 .
如图,A1B1C1—ABC是直三棱柱,∠BCA=90°,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是 .
在上是减函数,则b的取值范围是_____________
同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数是3的倍数”为事件
A,“两颗骰子的点数和大于8”为事件B,则P(B|A)=