(12分)已知的展开式中,第项的系数与第项的系数之比是10:1,求展开式中,
(1)含的项;
(2)系数最大的项.
(本小题满分12分)
盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设为取出的3个球中白色球的个数,求的分布列和数学期望.
(12分)如图,四棱锥中,底面为平行四边形,,,⊥底面.
(1)证明:平面平面;
(2)若,求与平面所成角的正弦值.
(12分)已知是二次函数,方程有两相等实根,且
(1)求的解析式.
(2)求函数与函数所围成的图形的面积.
.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图4中的实心点个数1,5,12,22,…, 被称为五角形数,其中第1个五角形数记作,第2个五角形数记作,第3个五角形数记作,第4个五角形数记作,……,若按此规律继续下去,若,则 .
如图,A1B1C1—ABC是直三棱柱,∠BCA=90°,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是 .