在极坐标系中,圆的圆心到直线的距离是;
直线与椭圆交于,两点,已知,,若且椭圆的离心率,又椭圆经过点,为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;
(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
已知数列和满足:, 其中为实数,为正整数.
(Ⅰ)对任意实数,证明数列不是等比数列;
(Ⅱ)对于给定的实数,试求数列的前项和;
(Ⅲ)设,是否存在实数,使得对任意正整数,都有成立? 若存在,求的取值范围;若不存在,说明理由.
如图,是圆的直径,点在圆上,,交于点,平面,,.
(Ⅰ)证明:;
(Ⅱ)求平面与平面所成的锐二面角的余弦值.
在今年伦敦奥运会期间,来自美国和英国的共计6名志愿者被随机地平均分配到跳水、篮球、体操这三个岗位服务,且跳水岗位至少有一名美国志愿者的概率是.
(Ⅰ)求6名志愿者中来自美国、英国的各几人;
(Ⅱ)求篮球岗位恰好美国人、英国人各一人的概率.
(Ⅲ)设随机变量为在体操岗位服务的美国志愿者的个数,求的分布列及期望
已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)若将的图象向右平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.