(本题满分13分)已知是定义在上的奇函数,当时,
(1)求的解析式;
(2)是否存在负实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由。
(3)对如果函数的图像在函数的图像的下方,则称函数在D上被函数覆盖。求证:若时,函数在区间上被函数覆盖。
(本大题13分)设、为函数 图象上不同的两个点,
且 AB∥轴,又有定点 ,已知是线段的中点.
⑴ 设点的横坐标为,写出的面积关于的函数的表达式;
⑵ 求函数的最大值,并求此时点的坐标。
(本题满分12分)
设函数(,为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
(本题满分12分)设函数是定义在上的减函数,并且满足,
(1)求,,的值,(2)如果,求x的取值范围。
(本题满分12分)
,
(1)若命题T为真命题,求c的取值范围。
(2)若P或Q为真命题,P且Q为假命题,求c的取值范围.
(本题满分12分)
已知集合A=,集合B=。
当=2时,求;
当时,若元素是的必要条件,求实数的取值范围。