(12分)设等比数列的前项和为,已知N).
(1)求数列的通项公式;(6分)
(2)在与之间插入n个数,使这n+2个数组成公差为的等差数列,求数列的前项和.(6分)
(12分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在1次游戏中,①摸出3个白球的概率;②获奖的概率;(6分)
(2)求在2次游戏中获奖次数X的分布列及数学期望E(X). (6分)
(12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(1)求证:BD⊥平面AED;(4分)
(2)求二面角F-BD-C的余弦值.(8分)
(12分)已知函数
(1)求函数f(x)的最小值和最小正周期;(4分)
(2)设△ABC的内角的对边分别为a,b,c且=,,若向量共线,求的值. (8分)
如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A、B的 任意一点,若P为半径OC上的动点, 则的最小值是( )
A. B. C. D.
已知定义在R上的奇函数和偶函数满足,
若,则( )
A. B. C. D.