(其中)的图象如图1所示,则函数的图象是图2中的( )
已知函数
(I)如果对任意恒成立,求实数a的取值范围;
(II)设函数的两个极值点分别为判断下列三个代数式:
①②③中有几个为定值?并且是定值请求出;
若不是定值,请把不是定值的表示为函数并求出的最小值.
对于函数,若存在,使,则称是的一
个"不动点".已知二次函数
(1)当时,求函数的不动点;
(2)对任意实数,函数恒有两个相异的不动点,求的取值范围;
(3)在(2)的条件下,若的图象上两点的横坐标是的不动点,
且两点关于直线对称,求的最小值.
将函数的图像向左平移1个单位,再将图像上的所
有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数的图像.
(1)求函数的解析式和定义域;
(2)求函数的最大值.
某海滨浴场的岸边可以近似的看成直线,位于岸边A处的救生员发现海
中B处有人求救,救生员没有直接从A处游向B处,而是沿岸边自A跑到距离B最近的D
处,然后游向B处.若救生员在岸边的行进速度是6米/秒,在海中的行进速度是2米/秒.
(不考虑水流速度等因素)
(1)请分析救生员的选择是否正确;
(2)在AD上找一点C,使救生员从A到B的时间最短,并求出最短时间.
已知关于的不等式的解集为.
(1)当时,求集合;
(2)当时,求实数的范围.