(本题满分14分)已知,且.
(1)求实数的值;
(2)求函数的单调递增区间及最大值,并指出取得最大值时的值.
(本题满分14分)在ΔABC中,角A,B,C的对边长分别是a,b,c,
若.
(1)求内角B的大小;
(2)若,求面积的最大值.
(本题满分14分)如图,四棱锥的底面为矩形,且,
,,
(Ⅰ)平面与平面是否垂直?并说明理由;
(Ⅱ)求直线与平面所成角的正弦值.
(本题满分14分)等差数列的首项为,公差,前项和为
(Ⅰ)若,求的值;
(Ⅱ)若对任意正整数均成立,求的取值范围。
某停车场有一排编号为1至7的七个停车空位,现有2辆不同的货车与2辆不同的客车同时停入,每个车位最多停一辆车,若同类车不停放在相邻的车位上,则共有 种不同的停车方案。
.已知函数,若恒成立,则实数的最小正值为