已知集合,,则( )
A. B.
C. D.
(本小题满分14分)
已知数列,,
(Ⅰ)求数列的通项公式;
(Ⅱ)当时,求证:
(Ⅲ)若函数满足:
求证:
(本小题满分13分)
已知函数.
(Ⅰ)求函数的极大值;
(Ⅱ)若对满足的任意实数恒成立,求实数的取值范围(这里是自然对数的底数);
(Ⅲ)求证:对任意正数、、、,恒有
.
(本小题满分12分)
某工厂去年的某产品的年销售量为100万只,每只产品的销售价为10元,每只产品固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计销售量从今年开始每年比上一年增加10万只,第n次投入后,每只产品的固定成本为(k>0,k为常数,且n≥0),若产品销售价保持不变,第n次投入后的年利润为万元.
(Ⅰ)求k的值,并求出的表达式;
(Ⅱ)若今年是第1年,问第几年年利润最高?最高利润为多少万元?
(本小题满分12分)
已知数列满足,,
(Ⅰ)设的通项公式;
(Ⅱ)求为何值时,最小(不需要求的最小值)
(本小题满分12分)
已知是函数图象的一条对称轴.
(Ⅰ)求的值;
(Ⅱ)作出函数在上的图象简图(不要求书写作图过程).