(本小题满分12分)
甲乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们设计成绩的分布列如下:
射手甲 |
射手乙 |
||||||
环数 |
8 |
9 |
10 |
环数 |
8 |
9 |
10 |
概率 |
概率 |
(Ⅰ)若甲乙两射手各射击两次,求四次射击中恰有三次命中10环的概率;
(Ⅱ)若两个射手各射击1次,记所得的环数之和为,求的分布列和期望.
(本小题满分12分)
如图(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别是PC、PD、BC的中点,现将△PDC沿CD折起,使平面PDC⊥平面ABCD(如图2)
(1)求二面角G-EF-D的大小;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明过程.
(本小题满分12分)
在△ABC中,角A、B、C所对的边分别为a、b、c,已知,,.
(I)求c及△ABC的面积S;
(II)求.
设函数,满足,对一切都成立,又知当时,,则
右图是一个空间几何体的三视图,则该几何体外接球的表面积是 ;
阅读如图所示的程序框图,输出的结果的值为