下面是一周内某地申领结婚证的新郎与新娘的年龄,记作(新郎年龄y,新娘年龄x):
(37,30),(30,27),(65,56),(45,40),(32,30),(28,26),(45,31),(29,24),(26,23),(28,25),(42,29),(36,33),(32,29),(24,22),(32,33),(ZI,29),(37,46),(28,25),(33,34),(21,23),(24,23),(49,44),(28,29),(30,30),(24,25),(22,23),(68,60),(25,25),(32,27),(42,37),(24,24),(24,22),(28,27),(36,31),(23,24),(30,26)
以下考虑y关于x的回归问题:
(1)如果每个新郎和新娘都同岁,穿过这些点的回归直线的斜率和截距等于什么?
(2)如果每个新郎比他的新娘大5岁,穿过这些点的回归直线的斜率和截距等于什么?
(3)如果每个新郎比他的新娘大10%,穿过这些点的回归直线的斜率和截距等于什么?
(4)对于上面的实际年龄作出回归直线;
(5)从这条回归直线,你对新娘和新郎的年龄模型可得出什么结论?
为考虑广告费用x与销售额y之间的关系,抽取了5家餐厅,得到如下数据:
广告费用(千元) |
1.0 |
4.0 |
6.0 |
10.0 |
14.0 |
销售额(千元) |
19.0 |
44.0 |
40.0 |
52.0 |
53.0 |
(1)在同一张图上画散点图,直线(1)=24+2.5x,(2)=;
(2)比较所画直线与曲线,哪一条更能表现这组数据之间的关系?
(3)分别计算用直线方程与曲线方程得到在5个x点处的销售额预测值、预测值与实际预测之间的误差,最后比较两个误差绝对值之和的大小。
现有一个有身高预测体重的回归方程:体重预测值=4(磅/英村)×身高-130磅.其中体重与身高分别以磅和英寸为单位.如果换算为公制(1英寸≈2.5cm,1磅≈0.45kg),回归方程应该为
表示具有相关关系的两个变量的一组数据的图形叫做 。
对具有 的两个变量进行统计分析的方法叫回归分析。
自变量取值一定时,因变量的取值 两个变量之间的关系叫做相关关系。与函数关系 ,相关关系是一种 。