下表是某地区的一种传染病与饮用水的调查表:
|
得病 |
不得病 |
合计 |
干净水 |
52 |
466 |
518 |
不干净水 |
94 |
218 |
312 |
合计 |
146 |
684 |
830 |
利用列联表的独立性检验,判断能否以99.9%的把握认为“该地区的传染病与饮用不干净的水有关”
参考数据:
|
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
设离散型随机变量X的分布列为
X |
0 |
1 |
2 |
3 |
4 |
P |
0.2 |
0.1 |
0.1 |
0.3 |
m |
求:(Ⅰ)2X+1的分布列;
(Ⅱ)|X-1|的分布列.
有一批产品,其中有12件正品和4件次品,从中任取3件,若表示取到次品的个数,则E= .
已知正态分布总体落在区间(0.2,+∞)的概率为0.5,那么相应的正态曲线f(x)在x= 时达到最高点.
A、B、C、D、E五人并排站成一排,若A,B必须相邻,且B在A的左边,那么不同的排法共有 种
一批10件产品,其中3件次品,不放回抽取3次,已知第一次抽到是次品,则第三次抽到次品的概率 _________。