(本小题满分12分)
如图,在三棱锥S-ABC中,BC⊥平面SAC,AD⊥SC.
(I)求证:AD⊥平面SBC;
(II)试在SB上找一点E,使得BC//平面ADE,并证明你的结论.
(本小题满分10分)
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
(2)求sinA-cos的最大值,并求取得最大值时角A,B的大小.
近年来,随着以煤炭为主的能源消耗大幅攀升、机动车保有量急剧增加,我国许多大城市灰霾现象频发,造成灰霾天气的“元凶”之一是空气中的pm2.5(直径小于等于2.5微米的颗粒物).右图是某市某月(按30天计)根据对“pm2.5”24小时平均浓度值测试的结果画成的频率分布直方图,若规定空气中“pm2.5”24小时平均浓度值不超过0.075毫克/立方米为达标,那么该市当月有 天“pm2.5”含量不达标.
已知,,且是的必要不充分条件,求实数的取值范围.
为抗击金融风暴,某系统决定对所属企业给予低息贷款的扶持,该系统制定了评分标准,并根据标准对企业进行评估,然后依据评估得分将这些企业分别定为优秀、良好、合格、不合格四个等级,并根据等级分配相应的低息贷款数额,为了更好地掌握贷款总额,该系统随机抽查了所属的部分企业.一下图表给出了有关数据(将频率看做概率)
(1)任抽一家所属企业,求抽到的企业等级是优秀或良好的概率;
(2)对照标准,企业进行了整改.整改后,如果优秀企业数量不变,不合格企业、合格企业、良好企业的数量成等差数列.要使所属企业获得贷款的平均值(即数学期望)不低于410万元,那么整改后不合格企业占企业总数百分比的最大值是多少?
解不等式