如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,现将△ADE沿直线DE翻折成△,使平面⊥平面BCDE,F为线段的中点.
(Ⅰ)求证:EF∥平面;
(Ⅱ)求直线与平面所成角的正切值.
在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
(1)求证:平面EFG⊥平面PDC;
(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.
如图所示,直棱柱中,底面是直角梯形,,.
(1)求证:平面;
(2)在A1B1上是否存一点,使得与平面平行?证明你的结论.
如图,平面⊥平面,为正方形, ,且分别是线段的中点.
(Ⅰ)求证://平面;
(Ⅱ)求异面直线与所成角的余弦值.
如图, 在空间四边形SABC中, 平面ABC, , 于N, 于M.
求证:①AN^BC; ②平面SAC^平面ANM
下面三个图中,右面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在左面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;