设数列{an}是公差为d的等差数列,其前n项和为Sn.
已知a1=1,d=2,
①求当n∈N*时,的最小值;
②当n∈N*时,求证:++…+<;
设是一个公差为2的等差数列,成等比数列.
(1) 求数列的通项公式;
(2) 数列满足,设的前n项和为,求.
已知命题p:f(x)=在区间(0,+∞)上是减函数;命题q:不等式(x-1)2>m的解集为R.若命题“p∨q”为真,命题“p∧q”为假,求实数m的取值范围是。
解关于的不等式:
解不等式
(1)已知关于x的不等式(a+b)x+(2a-3b)<0的解集为,求关于x的不等式(a-3b)x+(b-2a)>0的解集.
(2)
(10分) 已知数列{an}的前n项和Sn=10n-n2,(n∈N*).
(1)求a1和an;
(2)记bn=|an|,求数列{bn}的前n项和.