若那么的值为 ( )
A.-1 B.1 C.0 D.
已知向量,满足·=0,││=1,││=2,则│2-│=( )
A. 0 B. C. 4 D. 8
函数最小值是 ( )
A.-1 B. C. D.1
(本题满分14分)
已知直线,圆.
(Ⅰ)证明:对任意,直线与圆恒有两个公共点.
(Ⅱ)过圆心作于点,当变化时,求点的轨迹的方程.
(Ⅲ)直线与点的轨迹交于点,与圆交于点,是否存在的值,使得?若存在,试求出的值;若不存在,请说明理由.
(本题满分14分)某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(Ⅰ)求n的值;
(Ⅱ)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率;
(Ⅲ)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个之间的均匀随机数,并按如右所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
(本小题满分13分)某同学大学毕业后在一家公司上班,工作年限和年收入(万元),有以下的统计数据:
3 |
4 |
5 |
6 |
|
2.5 |
3 |
4 |
4.5 |
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(Ⅲ)请你估计该同学第8年的年收入约是多少?
(参考公式:)