(本题满分14分)
(理)已知数列{an}的前n项和,且=1,
.
(I)求数列{an}的通项公式;
(II)已知定理:“若函数f(x)在区间D上是凹函数,x>y(x,y∈D),且f’(x)存在,则有
< f’(x)”.若且函数y=xn+1在(0,+∞)上是凹函数,试判断bn与bn+1的大小;
(III)求证:≤bn<2.
(文)已知:函数f(x)= (a>1)
(1) 证明:函数f(x)在(-1,+∞ )上为增函数;
(2)证明方程f(x)=0没有负根.
(理)如图,|AB|=2,O为AB中点,直线过B且垂直于AB,过A的动直线与交于点C,点M在线段AC上,满足=.
(1)求点M的轨迹方程;
(2)若过B点且斜率为- 的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,求当ΔBPQ为锐角三角形时t的取值范围.
某汽车销售公司为促销采取了较灵活的付款方式,对购买10万元一辆的轿车在一年内将款全部付清的前提下,可以选择以下两种分期付款方案购车:
方案1:分3次付清,购买后4个月第一次付款,再过4个月第二次付款,再过4个月第三次付款.方案2:分12次付清,购买后1个月第一次付款,再过1个月第二次付款,……购买后12个月第十二次付款.
方案2:现规定分期付款中,每期付款额相同,月利率为0.8%,每月利息按复利计息,试比较以上两种方案的哪一种方案付款总数较少?(参考数据:1.0083=1.024,1.0084=1.033,1.00811=1.092,1.00812=1.1)
(本题满分12分)
如图,已知直平行六面体ABCD-A1B1C1D1中,AD⊥BD,AD=BD=a,E是CC1的中点,A1D⊥BE.
(I)求证:A1D⊥平面BDE;
(II)求二面角B―DE―C的大小;
(III)求点B到平面A1DE的距离
(本题满分12分)
质点A位于数轴x=0处,质点B位于x=2处.这两个质点每隔1秒钟都向左或
向右平移一个单位,设向左移动的概率为,向右移动的概率为.
(I)求3秒后,质点A在点x=1处的概率;
(II)求2秒后,质点A、B同时在x=2处的概率.