如图,已知三棱柱的侧棱与底面垂直,,,,分别是,的中点,点在直线上,且;
(Ⅰ)证明:无论取何值,总有;
(Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.
已知圆C:,直线L:
(1)求证:对m,直线L与圆C总有两个交点;
(2)设直线L与圆C交于点A、B,若|AB|=,求直线L的倾斜角;
(3)设直线L与圆C交于A、B,若定点P(1,1)满足,求此时直线L的方程.
如图,在直三棱柱中,、分别是、的中点,点在上,。
求证:(1)EF∥平面ABC;
(2)平面平面.
已知圆C过点(1,0),且圆心在轴的正半轴上,直线l:y=x-1被该圆所截得的弦长为2,求圆C的标准方程.
高等数学中经常用到符号函数,符号函数的定义为,试编写算法,画出流程图,写出程序输入x的值,输出y的值。
已知圆M:(x+cosq)2+(y-sinq)2=1,直线l:y=kx,下面四个命题:
A.对任意实数k与q,直线l和圆M相切;
B.对任意实数k与q,直线l和圆M有公共点;
C.对任意实数q,必存在实数k,使得直线l与和圆M相切;
D.对任意实数k,必存在实数q,使得直线l与和圆M相切
其中真命题的代号是______________(写出所有真命题的代号)