(本题13分)在几何体ABCDE中,∠BAC= ,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1.
(1)求证:DC∥平面ABE;
(2)求证:AF⊥平面BCDE;
(3)求几何体ABCDE的体积.
(本题12分)一只口袋内装有大小相同的5只球,其中3只白球,2只黑球.现从口袋中每次任取一球,每次取出不放回,连续取两次.问:
(1)取出的两只球都是白球的概率是多少?
(2)取出的两只球至少有一个白球的概率是多少?
如图,空间中两个有一条公共边AD的正方形ABCD和ADEF.设M、N分别是BD和AE的中点,那么
①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE异面
以上4个命题中正确的是
从800件产品中抽取60件进行质检,利用随机数表法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数8开始往右读数,则最先抽取的4件产品的编号依次是
(如图摘录了随机数表第7行至第9行各数)
若执行的程序框图如图所示,那么输出的S= 。
如图,四边形ABCD为矩形,AB= ,BC=1,以A为圆心,1为半径作四分之一个圆弧DE,在圆弧DE上任取一点P,则直线AP与线段BC有公共点的概率是 。