已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点.若点到该抛物线焦点的距离为,则( )
A. B. C. D.
设定点、,动点满足条件,则点的轨迹是( )
A.椭圆 B.线段 C.不存在 D.线段或椭圆
已知函数图像上点处的切线方程与直线平
行(其中),
(I)求函数的解析式; (II)求函数上的最小值;
(III)对一切恒成立,求实数的取值范围.
如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为,线段的中点分别为,且△ 是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过做直线交椭圆于P,Q两点,使,求直线的方程.
在四棱锥中,⊥平面,,,,,是的中点.
(Ⅰ)证明:⊥平面;
(Ⅱ)若直线与平面所成的角和与平面所成的角相等,求四棱锥的体积.
已知焦点在轴上的双曲线的两条渐近线过坐标原点,且两条渐近线与以
点 为圆心,1为半径的圆相切,又知的一个焦点与A关于直线对称.
(1)求双曲线的方程;
(2)设直线与双曲线的左支交于,两点,另一直线经过 及的中点,求直线在轴上的截距的取值范围.