如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的中点,求证:平面D1BQ∥平面PAO.
根据下列条件求直线方程
(1)过点(2,1)且倾斜角为的直线方程;
(2)过点(-3,2)且在两坐标轴截距相等的直线方程.
若任意满足 的实数 ,不等式 恒成立,则实数的最大值是_______.
如图,在正三棱柱ABC—A1B1C1中,底面边长及侧棱长均为2,D是棱AB的中点,
(1)求证;
(2)求异面直线AC1与B1C所成角的余弦值.
已知实数满足方程,求:
(1)的最大值和最小值;
(2)的最小值;
(3)的最大值和最小值.
已知圆C的圆心与点关于直线对称.直线与圆C相交于两点,且,求圆C的方程.