关于的不等式的解集是( )
A. (-2,3) B. (-3,2)
C. ()(3,) D.
若,则有( )
A. < B . C . > D. >
(本小题满分14分)为了解初三学生女生身高情况,某中学对初三女生身高进行了一次抽样调查,根据所得数据整理后列出了频率分布表如下:
组 别 频数 频率
145.5~149.5 1 0.02
149.5~153.5 4 0.08
153.5~157.5 22 0.44
157.5~161.5 13 0.26
161.5~165.5 8 0.16
165.5~169.5 m n
合 计 M N
(1)求出表中所表示的数m,n,M,N分别是多少?
(2)画出频率分布直方图和频率分布折线图.
(3)若要从中再用分层抽样方法抽出10人作进一步调查,则身高在[153.5,161.5)范围内的应抽出多少人?
(4)根据频率分布直方图,分别求出被测女生身高的众数,中位数和平均数?(结果保留一位小数)
(本题满分13分) 已知关于x的二次函数
(1)设集合和,从集合中随机取一个数作为,从中随机取一个数作为,求函数在区间上是增函数的概率;
(2)设点是区域内的随机点,求函数在区间上是增函数的概率.
(本小题满分14分)
某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)如下:
(I)请画出适当的统计图(茎叶图或频率分布直方图);如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).
(Ⅱ)从甲、乙两人的10次成绩中各随机抽取一次,求抽取的成绩中至少有一个不高于 12.8秒的概率.
(III)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,
现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.
求函数的最小值是______.