某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次, 如果每次拖7节车厢,则每日能来回10次.
(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式:
(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数。
已知函数.
(1)用分段函数的形式表示该函数;
(2)在右边所给的坐标系中画出该函数的图象;
(3)写出该函数的定义域、值域、奇偶性、单调区间(不要求证明).
设全集为实数集R,,,.
(1)求及;
(2)如果,求a的取值范围.
计算:
⑴ (2)
设是定义在R上的两个函数,是R上任意两个不等的实根,设
恒成立,且为奇函数,判断函数的奇偶性并说明理由。
(本小题满分14分)函数
(1)若,求的值域
(2)若在区间上有最大值14。求的值;
(3)在(2)的前题下,若,作出的草图,并通过图象求出函数的单调区间