(本题满分14分)
已知函数(),.
(Ⅰ)当时,解关于的不等式:;
(Ⅱ)当时,记,过点是否存在函数图象的切线?若存在,有多少条?若不存在,说明理由;
(Ⅲ)若是使恒成立的最小值,对任意,
试比较与的大小(常数).
(本题满分12分)
设是定义在上的奇函数,函数与的图象关于轴对称,且当时,.
(I)求函数的解析式;
(II)若对于区间上任意的,都有成立,求实数的取值范围.
(本小题满分12分)
已知等差数列的公差,设,
(Ⅰ)若 ,求数列的通项公式;
(Ⅱ)若,且成等比数列,求的值;
(Ⅲ)若,证明:.
(本小题满分12分)
已知向量,.函数.
(I)若,求的值;
(II)在中,角的对边分别是,且满足,
求的取值范围.
(本小题满分12分)
已知关于x的二次函数.
(I)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数在区间上是增函数的概率;
(II)设点(a,b)是区域内的一点,求函数在区间上是增函数的概率.
本小题满分12分)
已知三棱锥PABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,
N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(I)证明:CM⊥SN;(II)求SN与平面CMN所成角的大小.