满分5 > 高中数学试题 >

(本小题满分12分) 设、是函数图象上任意两点,且. (Ⅰ)求的值; (Ⅱ)若(...

(本小题满分12分) 设6ec8aac122bd4f6e6ec8aac122bd4f6e是函数6ec8aac122bd4f6e图象上任意两点,且6ec8aac122bd4f6e

(Ⅰ)求6ec8aac122bd4f6e的值;

(Ⅱ)若6ec8aac122bd4f6e(其中6ec8aac122bd4f6e),求6ec8aac122bd4f6e

(Ⅲ)在(Ⅱ)的条件下,设6ec8aac122bd4f6e6ec8aac122bd4f6e),若不等式6ec8aac122bd4f6e6ec8aac122bd4f6e对任意的正整数n恒成立,求实数a的取值范围.

 

(Ⅰ)2;(Ⅱ).(Ⅲ). 【解析】本试题主要是考查了函数的性质和数列的综合运用。 (1)因为,通分合并得到结论。 (2)由(Ⅰ)可知,当时,, 由得,,然后倒序相加法得到结论。 (3)由(Ⅱ)得,,不等式即为,运用放缩法得到结论。 (Ⅰ) .··········· 4分 (Ⅱ)由(Ⅰ)可知,当时,, 由得,, ∴, ∴.······························· 8分 (Ⅲ)由(Ⅱ)得,,不等式即为,设, 则 , ∴, ∴数列是单调递增数列,∴,··············· 10分 要使不等式恒成立,只需,即, ∴或解得. 故使不等式对于任意正整数n恒成立的的取值范围是.········ 12分
复制答案
考点分析:
相关试题推荐

(本小题满分12分) 已知函数6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e)的图象过点6ec8aac122bd4f6e,点6ec8aac122bd4f6e关于直线6ec8aac122bd4f6e的对称点6ec8aac122bd4f6e6ec8aac122bd4f6e的图象上.

(Ⅰ)求函数6ec8aac122bd4f6e的解析式;

(Ⅱ)令6ec8aac122bd4f6e,求6ec8aac122bd4f6e的最小值及取得最小值时x的值.

 

查看答案

(本小题满分12分) 在△ABC中,a、b、c分别为内角A、B、C的对边,且满足6ec8aac122bd4f6e.

(Ⅰ)求角A的大小;

(Ⅱ)若6ec8aac122bd4f6e6ec8aac122bd4f6e,求6ec8aac122bd4f6e

 

查看答案

(本小题满分12分) 命题6ec8aac122bd4f6e实数x满足6ec8aac122bd4f6e(其中6ec8aac122bd4f6e),命题6ec8aac122bd4f6e实数6ec8aac122bd4f6e满足6ec8aac122bd4f6e

(Ⅰ)若6ec8aac122bd4f6e,且6ec8aac122bd4f6e为真,求实数6ec8aac122bd4f6e的取值范围;

(Ⅱ)若6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e的充分不必要条件,求实数a的取值范围.

 

查看答案

(本小题满分12分) 已知等差数列6ec8aac122bd4f6e的前n项和为6ec8aac122bd4f6e,且6ec8aac122bd4f6e6ec8aac122bd4f6e

(Ⅰ)求数列6ec8aac122bd4f6e的通项公式;

(Ⅱ)设6ec8aac122bd4f6e,求数列6ec8aac122bd4f6e的前n项和6ec8aac122bd4f6e

 

查看答案

在数列6ec8aac122bd4f6e中,如果对任意的6ec8aac122bd4f6e,都有6ec8aac122bd4f6e6ec8aac122bd4f6e为常数),则称数列6ec8aac122bd4f6e为比等差数列,6ec8aac122bd4f6e称为比公差.现给出以下命题:①若数列6ec8aac122bd4f6e满足6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e),则该数列不是比等差数列;②若数列6ec8aac122bd4f6e满足6ec8aac122bd4f6e,则数列6ec8aac122bd4f6e是比等差数列,且比公差6ec8aac122bd4f6e;③等比数列一定是比等差数列,等差数列不一定是比等差数列;④若6ec8aac122bd4f6e是等差数列,6ec8aac122bd4f6e是等比数列,则数列6ec8aac122bd4f6e是比等差数列.

其中所有真命题的序号是_________________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.