(本小题14分)设函数.
(Ⅰ)讨论的单调性;
(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;
(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在()个正数…,使得成立?请证明你的结论.
(本小题12分)椭圆:的两个焦点为,点在椭圆上,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过圆的圆心,交椭圆于两点,且关于点对称,求直线的方程。
(本小题12分)某产品原来的成本为1000元/件,售价为1200元/件,年销售量为1万件。由于市场饱和顾客要求提高,公司计划投入资金进行产品升级。据市场调查,若投入万元,每件产品的成本将降低元,在售价不变的情况下,年销售量将减少万件,按上述方式进行产品升级和销售,扣除产品升级资金后的纯利润记为(单位:万元).(纯利润=每件的利润×年销售量-投入的成本)
(Ⅰ)求的函数解析式;
(Ⅱ)求的最大值,以及取得最大值时的值.
(本小题12分)在△ABC中,内角的对边分别为,且
(Ⅰ)求角的大小;
(II)若求的值.
(本小题12分)如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(Ⅰ)求证:DM∥平面APC;
(II)求证:平面ABC⊥平面APC.
若函数,则此函数图像在点处的切线的倾斜角为( ).
A、 B、0 C、锐角 D、钝角