(12分)设椭圆,F是它的左焦点,Q是右准线与x轴的交点,点满足向量与PQ数量积为0,N是直线PQ与椭圆的一个公共点,当时,求椭圆的方程.
(12分)已知双曲线的离心率,过的直线到原点的距离是
(1)求双曲线的方程;
(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.
(12分)已知抛物线y2=8x上两个动点A、B及一个定点M(x0, y0),F是抛物线的焦点,且|AF|、|MF|、|BF|成等差数列,线段AB的垂直平分线与x轴交于一点N.
(1)求点N的坐标(用x0表示);
(2)过点N与MN垂直的直线交抛物线于P、Q两点,若|MN|=4,求△MPQ的面积.
如果过两点和的直线与抛物线没有交点,那么实数的取值范围是_____________.
定长为l (l>)的线段AB的端点在双曲线b2x2-a2y2=a2b2的右支上, 则AB中点M的横坐标的最小值为
设P为双曲线y2=1上一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是 .