椭圆的焦点在y轴上,且,则这样的椭圆的个数为 .
电子计算机的输入纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产生 种不同的信息.
在正三棱柱ABC—A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为( )
A.60° B.90° C.105° D.75°
(14分)如图,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形且∠C1CB=∠C1CD=∠BCD=60°.
(1)证明:C1C⊥BD;
(2)假定CD=2,CC1=,记面C1BD为α,面CBD为β,求二面角α—BD—β的平面角的余弦值;
(3)当的值为多少时,能使A1C⊥平面C1BD?请给出证明.
(14分)如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求的长;
(2)求cos< >的值;
(3)求证:A1B⊥C1M.
(12分)四棱锥P—ABCD中,底面ABCD是一个平行四边形, ={2,-1,-4},={4,2,0},={-1,2,-1}.
(1)求证:PA⊥底面ABCD;
(2)求四棱锥P—ABCD的体积;
(3)对于向量={x1,y1,z1},={x2,y2,z2},={x3,y3,z3},定义一种运算:
(×)·=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2y1z3-x3y2z1,试计算(×)·的绝对值的值;说明其与四棱锥P—ABCD体积的关系,并由此猜想向量这一运算(×)·的绝对值的几何意义..