(本小题满分14分)
已知数列满足:其中
(1)当时,求的通项公式;
(2)在(1)的条件下,若数列中,且求证:对于恒成立;
(3)对于设的前项和为,试比较与的大小.
(本小题满分14分)已知椭圆的一个焦点与抛物线的焦点重合,P为椭圆与抛物线的一个公共点,且|PF|=2,倾斜角为的直线过点.
(1)求椭圆的方程;
(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得与关于直线对称,若存在,求出点的坐标,若不存在,说明理由.
在直角坐标系中,曲线的参数方程为,以轴的正半轴为极轴建立极坐标系,曲线在极坐标系中的方程为.若曲线与有两个不同的交点,则实数的取值范围是 .
已知圆的直径AB=10cm,C是圆周上一点(不同于A、B点),CDAB于D,CD=3cm,
则BD=____________cm.
已知条件,条件,且的一个充分不必要条件是,则的取值范围是 .
在中,若,则该三角形的形状是 .