已知数列{an}满足a1=1,a2=-,从第二项起,{an}是以为公比的等比数列,{an}的前n项和为Sn,试问:S1,S2,S3…,Sn,…能否构成等比数列?为什么?
已知a+b+c,b+c-a,c+a-b,a+b-c成等比数列,且公比为q,求证:(1)q3+ q 2+q=1,(2)q=
数列{an}是正项等比数列,它的前n项和为80,其中数值最大的项为54,前2n项的和为6560,求它的前100项的和。
已知等比数列{an},公比为-2,它的第n项为48,第2n-3项为192,求此数列的通项公式。
某工厂在某年度之初借款A元,从该年度末开始,每年度偿还一定的金额,恰在n年内还清,年利率为r,则每次偿还的金额为 元。
设>,不等式⑴a2>b2,⑵>⑶>能成立的个数为( )
A.0 B.1 C.2 D.3