满分5 > 高中数学试题 >

在△ABC中,a=3,c=3,A=300,则角C及b.

在△ABC中,a=3,c=36ec8aac122bd4f6e,A=300,则角C及b.

 

C=120 b=3。或C=60 b=6。 【解析】 试题分析:由正弦定理得,sinC=.∴C=120或C=60。 当C=120时,B=1800-1200-300=300,b2=32+(3)2-2×3×3cos120=9,b=3. 同理当C=60,b=6. 故C=120 b=3。或C=60 b=6。 考点:本题主要考查正弦定理、余弦定理。
复制答案
考点分析:
相关试题推荐

6ec8aac122bd4f6e中,6ec8aac122bd4f6e分别为三个内角A、B、C所对的边,设向量6ec8aac122bd4f6e6ec8aac122bd4f6e,若向量6ec8aac122bd4f6e,则角C 的大小为     

 

查看答案

在△ABC中,有等式:①asinA=bsinB;②asinB=bsinA;③acosB=bcosA;④6ec8aac122bd4f6e. 其中恒成立的等式序号为_______________.

 

查看答案

在△ABC中,若a=50,b=256ec8aac122bd4f6e, A=45°则B=                    .

 

查看答案

a,b,c是△ABC的三边,且B=1200,则a2+ac+c2-b2的值为          .

 

查看答案

在△ABC中,已知b=4,c=8,B=306ec8aac122bd4f6e.则a=    

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.