已知椭圆,点在椭圆上。
(1)求椭圆的离心率;
(2)若椭圆的短半轴长为,直线与椭圆交于A、B,且线段AB以M(1,1)为中点,求直线的方程。
已知椭圆,直线:y=x+m
(1)若与椭圆有一个公共点,求的值;
(2)若与椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值.
设命题;命题,若是的必要不充分条件,求实数的取值范围。
若椭圆的离心率为,焦点在轴上,且长轴长为10,曲线上的点与椭圆的两个焦点的距离之差的绝对值等于4.
(1)求椭圆的标准方程;
(2)求曲线的方程。
直线过双曲线的右焦点且与双曲线的右支交与A、B两点,,则A、B与双曲线的左焦点所得三角形的周长为
①若,则方程有实根;
②“若,则”的否命题;
③“矩形的对角线相等”的逆命题;
④“若,则、至少有一个为零”的逆否命题 .
以上命题中的真命题有 .