已知为双曲线的左、右焦点.
(Ⅰ)若点为双曲线与圆的一个交点,且满足,求此双曲线的离心率;
(Ⅱ)设双曲线的渐近线方程为,到渐近线的距离是,过的直线交双曲线于A,B两点,且以AB为直径的圆与轴相切,求线段AB的长.
已知函数,其中为非零常数.
(Ⅰ)解关于的不等式;
(Ⅱ)若当时,函数的最小值为3,求实数的值.
已知抛物线的准线与x轴交于点Q.
(Ⅰ)若过点Q的直线与抛物线有公共点,求直线的斜率的取值范围;
(Ⅱ)若过点Q的直线与抛物线交于不同的两点A、B,求AB中点P的轨迹方程.
(Ⅰ)已知双曲线C与双曲线有相同的渐近线,且一条准线为,求双曲线C的方程;
(Ⅱ)已知圆截轴所得弦长为6,圆心在直线上,并与轴相切,求该圆的方程.
已知直线:,直线:.若,求的取值范围.
有下列命题:①若四边形的四边相等,则这个四边形一定菱形;②在正方体
中,分别是棱的中点,则直线与一定相交,且交点在直线上;③若点,,则的最大值是;④若的顶点A、B分别是椭圆两个焦点,且满足,则顶点C的轨迹方程是双曲线.
其中所有正确命题的序号是 .