(本小题满分15分)、某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米.
(1)若设休闲区的长米,求公园ABCD所占面积S关于的函数的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?
在△ABC中,已知BC=12,A=60°,B=45°,则AC=
命题“若,则”的逆否命题为
(本小题满分16分)
已知数列满足,
(1)求证:数列为等比数列 (2)求数列的通项公式
(3)试问:数列中是否存在不同的三项恰好成等差数列?若存在,求出这三项;若不存在,请说明理由.
(本小题满分16分)
已知外接圆的半径为2,分别是的对边
(1)求 (2)求面积的最大值
(本小题满分16分)
已知二次函数,若不等式的解集为,且方程有两个相等的实数根.(1)求的解析式;(2)若不等式在上恒成立,求实数的取值范围;