一个多面体的直观图和三视图如下:(其中分别是中点)
(1)求证:平面;
(2)求多面体的体积.
正的中线AF与中位线DE相交于G,已知是绕边DE旋转过程中的一个图形,给出四个命题:
①动点在上的射影在线段上;
②恒有;
③三棱锥的体积有最大值;
④异面直线与不可能垂直.以上正确的命题序号是
(本小题12分) 已知p:,q:x2-2x+1-m2≤0(m>0),且┐p是┐q的必要而不充分条件,求实数m的取值范围.
(本小题12分) 已知曲线的极坐标方程为,曲线的方程是, 直线的参数方程是: .
(1)求曲线的直角坐标方程,直线的普通方程;
(2)求曲线上的点到直线距离的最小值.
(本小题12分) 命题p: 函数y=在(-1, +)上单调递增, 命题函数y=lg[]的定义域为R.
(1)若“或”为真命题,求的取值范围;
(2)若“或”为真命题,“且”为假命题,求的取值范围.
专家由圆x+y=a的面积S=a通过类比推理猜想椭圆的面积S=ab. 之后利用演绎推理证明了这个公式是对的! 在平面直角坐标系中, 点集A={ (x, y)| }, 点集B={(x, y)| , 则点集M={(x, y)|x=x+x, y=y+y, (x, y)A, (x, y)B}所表示的区域的面积为_____________.