已知空间三条直线若与异面,且与异面,则( )
A.与异面. B.与相交.
C.与平行. D.与异面、相交、平行均有可能.
如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.
(1)设N为EF上一点,当时,有DN ∥平面AEM,求 的值;
(2)试探究点M的位置,使平面AME⊥平面AEF。
如图,长方体AC1中,AB=2,BC=AA1=1.E、F、G分别为棱DD1、D1C1、BC的中点.
(1)求证:平面平面;
(2)在底面A1D1上有一个靠近D1的四等分点H,求证: EH∥平面FGB1;
(3)求四面体EFGB1的体积.
已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.
如图,四面体ABCD中,O、E分别是BD、BC的中点
(I)求证:平面BCD;
(II)求异面直线AB与CD所成角的余弦值;
(III)求点E到平面ACD的距离。
设函数(1)设的内角,且为钝角,求的最小值;
(2)设是锐角的内角,且求 的三个内角的大小和AC边的长。