在2011年十四中“校园十佳歌手”大赛中,七位评委为一选手打出的分数如下:
90 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
A.92,2 B.93,2 C. 92,2.8 D.93,2.8
某超市有四类商品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10
种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )
A.10 B.8 C.7 D.6
本小题满分13分)
已知圆,△ABC内接于此圆,A点的坐标(3,4),O为坐标原点.
(Ⅰ)若△ABC的重心是G(,2),求BC中点D的坐标及直线BC的方程;
(Ⅱ)若直线AB与直线AC的倾斜角互补,求证:直线BC的斜率为定值.
(本小题满分13分)
已知直线,圆.
(Ⅰ)证明:对任意,直线恒过一定点N,且直线与圆C恒有两个公共点;
(Ⅱ)设以CN为直径的圆为圆D(D为CN中点),求证圆D的方程为:
(Ⅲ)设直线与圆的交于A、B两点,与圆D:交于点(异于C、N),当变化时,求证为AB的中点.
(本小题满分13分)
如图,在直三棱柱(侧棱垂直于底面的棱柱)中, , , , ,点是的中点.
(Ⅰ) 求证:∥平面;
(Ⅱ)求AC1与平面CC1B1B所成的角.
(本小题满分13分)
如图,在三棱锥S-ABC中,BC⊥平面SAC,AD⊥SC.
(Ⅰ)求证:AD⊥平面SBC;
(Ⅱ)试在SB上找一点E,使得平面ABS⊥平面ADE,并证明你的结论.