(本小题12分)已知().
(1)判断函数的奇偶性,并证明;
(2)若,用单调性定义证明函数在区间上单调递减;
(3)是否存在实数,使得的定义域为时,值域为
,若存在,求出实数的取值范围;若不存在,则说明理由.
(本小题12分)某公司生产一种产品每年需投入固定成本为0.5万元,此外每生产100件这种产品还需要增加投入0.25万元.经预测知,当售出这种产品百件时,若,则销售所得的收入为万元:若,则销售收入为万元.
(1)若该公司的这种产品的年产量为百件,请把该公司生产并销售这种产品所得的年利润表示为当年生产量的函数;
(2)当年产量为多少时,当年公司所获利润最大?
(本小题12分)已知函数
(1)若函数的值域为,求实数的取值范围;
(2)当时,函数恒有意义,求实数的取值范围。
(本小题满分12分)
如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AB∥CD,BA⊥AD,且CD=2AB.
(1)若AB=AD=,直线PB与CD所成角为,
①求四棱锥P-ABCD的体积;
②求二面角P-CD-B的大小;
(2)若E为线段PC上一点,试确定E点的位置,使得平面EBD垂直于平面ABCD,并说明理由.
(本小题满分12分)
如图,正方体中, E是的中点.
(1)求证:∥平面AEC;
(2)求与平面所成的角.
(本小题10分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;