(本题满分12分)在直角坐标系xOy中,直线l的参数方程为:(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为r=cos(θ+),求直线l被曲线C所截的弦长.
(本题满分12分)双曲线与椭圆有相同焦点,且经过点(,4),求其方程.
如图,已知双曲线以长方形ABCD的顶点A、B为左、右焦点,且双曲线过C、D两顶点.若AB=4,BC=3,则此双曲线的标准方程为_____________________.
(本小题满分12分)
对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数.
(1)求闭函数符合条件②的区间[];
(2)判断函数是否为闭函数?并说明理由;
(3)若函数是闭函数,求实数的取值范围.
(本小题满分12分)
某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).
(1)分别写出两种产品的收益与投资额的函数关系;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
(本小题满分12分)
已知函数(为实数,,),若,且函数的值域为.
(1)求的表达式;
(2)当时,是单调函数,求实数的取值范围.