(本题满分14分)已知为定义在上的奇函数,当时,;
(1)求在上的解析式;
(2)试判断函数在区间上的单调性,并给出证明.
(本小题满分14分)下面是利用UNTIL循环设计的计算的一个算法程序.
S=1
i=1
DO
①
i=i+2
LOOP UNTIL ②
PRINT S
END
(Ⅰ)请将其补充完整,并转化为WHILE循环;
(Ⅱ)绘制出该算法的流程图.
(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:
3 |
4 |
5 |
6 |
|
2.5 |
3 |
4 |
4.5 |
(1)请画出上表数据的散点图;并指出x,y 是否线性相关;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考:用最小二乘法求线性回归方程系数公式 ,)
(本小题满分12分)在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.
(1)求第二小组的频率,并补全这个频率分布直方图;
(2)求这两个班参赛的学生人数是多少?
(3)求两个班参赛学生的成绩的中位数。
(本小题满分12分)已知,,
(1)求和;
(2)若记符号,
①在图中把表示“集合”的部分用阴影涂黑;
②求和.
定义运算 已知函数,则 .