(本小题满分10分)河上有一抛物线型拱桥,当水面距拱顶5时,水面宽为8,一小船宽4,高2,载货后船露出水面上的部分高,问水面上涨到与抛物线拱顶相距多少米时,小船恰好能通行。
(本小题满分10分)已知一动圆与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线。
(本小题满分10分)已知双曲线的两条渐近线均和圆相切,且双曲线的右焦点为圆的圆心,求该双曲线的方程。
(本小题满分10分)已知,圆C:,直线:.
(1) 当a为何值时,直线与圆C相切;
(2) 当直线与圆C相交于A、B两点,且时,求直线的方程.
(本题满分8分)求过点A(2,-1),且和直线x-y=1相切,圆心在直线y=-2x上的圆的方程.
给出下列命题,其中正确命题的序号是 (填序号)。
(1)已知椭圆两焦点为,则椭圆上存在六个不同点,使得为直角三角形;
(2)已知直线过抛物线的焦点,且与这条抛物线交于两点,则的最小值为2;
(3)若过双曲线的一个焦点作它的一条渐近线的垂线,垂足为,为坐标原点,则;
(4)已知⊙⊙则这两圆恰有2条公切线。