(本小题12分)
给定抛物线,是抛物线的焦点,过点的直线与相交于、两点,为坐标原点.
(Ⅰ)设的斜率为1,求以为直径的圆的方程;
(Ⅱ)设,求直线的方程.
(本题满分12分)
已知关于x的二次函数
(1)设集合和,从集合中随机取一个数作为,从中随机取一个数作为,求函数在区间上是增函数的概率;
(2)设点是区域内的随机点,求函数在区间上是增函数的概率。
(本小题12分)
设△ABC的内角A,B,C所对的边长分别为a,b,c,且.
(Ⅰ)求角的大小;
(Ⅱ)若角,边上的中线的长为,求的面积.
(本题满分10分)
已知是等差数列,是各项为正数的等比数列,且,,.
(Ⅰ)求和通项公式;
(Ⅱ)若,求数列的前项和.
等差数列的前项和为,且,,记,如果存在正整数,使得对一切正整数,都成立,则的最小值是________.
设是曲线上的一个动点,则点到点的距离与点到轴的距离之和的最小值为________.