(本题满分12分)
在直角坐标系中,点到两点,的距离之和等于,设点的轨迹为。
(1)求曲线的方程;
(2)过点作两条互相垂直的直线分别与曲线交于和。
①以线段为直径的圆过能否过坐标原点,若能求出此时的值,若不能说明理由;
②求四边形面积的取值范围。
(本题满分12分)
如图,在四棱锥中,底面为平行四边形,平面,在棱上.
(I)当时,求证平面
(II)当二面角的大小为时,求直线与平面所成角的正弦值.
(本小题12分)
给定抛物线,是抛物线的焦点,过点的直线与相交于、两点,为坐标原点.
(Ⅰ)设的斜率为1,求以为直径的圆的方程;
(Ⅱ)设,求直线的方程.
(本题满分12分)
已知关于x的二次函数
(1)设集合和,从集合中随机取一个数作为,从中随机取一个数作为,求函数在区间上是增函数的概率;
(2)设点是区域内的随机点,求函数在区间上是增函数的概率。
(本小题12分)
设△ABC的内角A,B,C所对的边长分别为a,b,c,且.
(Ⅰ)求角的大小;
(Ⅱ)若角,边上的中线的长为,求的面积.
(本题满分10分)
已知是等差数列,是各项为正数的等比数列,且,,.
(Ⅰ)求和通项公式;
(Ⅱ)若,求数列的前项和.